AI Summary of "Continuous Probability Distributions - Basic Introduction"
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Continuous Probability Distributions Overview</strong><br/>📌 Continuous random variables (like $X$) can take <span class="yellow-highlight font-semibold">any value</span> along the x-axis (e.g., 2, 3.5, 4.68), unlike discrete variables which have restrictions.<br/>📈 The $y$-axis represents the <span class="yellow-highlight font-semibold">Probability Density Function</span> ($f(X)$), which dictates the height of the curve above $X$.<br/>🖼️ A fundamental rule is that the <span class="yellow-highlight font-semibold">total area under the curve</span> for any continuous probability distribution must always equal <span class="yellow-highlight font-semibold">1</span>.<br/>🚫 The probability of $X$ being equal to a single, specific point (e.g., $P(X=B)$) is always <span class="yellow-highlight font-semibold">zero</span> because a single point has no "width" for area calculation.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Probability Calculation via Area</strong><br/>🟦 Probability is calculated by finding the <span class="yellow-highlight font-semibold">area under the curve</span> corresponding to the specified range of $X$.<br/>➡️ For $P(X < a)$, calculate the area under the curve to the <span class="yellow-highlight font-semibold">left of $a$</span>.<br/>➡️ For $P(B < X < C)$, calculate the area under the curve <span class="yellow-highlight font-semibold">between $B$ and $C$</span>.<br/>⚖️ For continuous distributions, $P(X < a)$ is <span class="yellow-highlight font-semibold">equal to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>X</mi><mo>≤</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(X \le a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span></span></span> because $P(X=a)$ is zero.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">The Uniform Distribution</strong><br/>📐 The uniform distribution features a <span class="yellow-highlight font-semibold">constant $f(X)$ value</span> over a range, forming a rectangle whose area must sum to 1.<br/>🧮 The probability density function is defined as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mn>1</mn><mrow><mi>B</mi><mo>−</mo><mi>A</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">f(X) = \frac{1}{B - A}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2484em;vertical-align:-0.4033em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">A</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4033em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>, where $A$ and $B$ are the distribution's bounds.<br/>📊 The <span class="yellow-highlight font-semibold">mean</span> (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi></mrow><annotation encoding="application/x-tex">\mu</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">μ</span></span></span></span>) for a uniform distribution is the average of the bounds: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>=</mo><mfrac><mrow><mi>A</mi><mo>+</mo><mi>B</mi></mrow><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\mu = \frac{A + B}{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">μ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2173em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8723em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">A</span><span class="mbin mtight">+</span><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>📏 The <span class="yellow-highlight font-semibold">standard deviation</span> (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span></span></span></span>) is calculated as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi><mo>=</mo><mfrac><mrow><mi>B</mi><mo>−</mo><mi>A</mi></mrow><msqrt><mn>12</mn></msqrt></mfrac></mrow><annotation encoding="application/x-tex">\sigma = \frac{B - A}{\sqrt{12}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.4103em;vertical-align:-0.538em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8723em;"><span style="top:-2.551em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9128em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mtight">12</span></span></span><span style="top:-2.8728em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702<br/>c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14<br/>c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54<br/>c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10<br/>s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429<br/>c69,-144,104.5,-217.7,106.5,-221<br/>l0 -0<br/>c5.3,-9.3,12,-14,20,-14<br/>H400000v40H845.2724<br/>s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7<br/>c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z<br/>M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1272em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.538em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">The Exponential Distribution</strong><br/>📉 The exponential distribution is characterized by a <span class="yellow-highlight font-semibold">decreasing function</span> starting from a $y$-intercept defined by the rate parameter, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">λ</span></span></span></span>.<br/>🔗 The rate parameter is the reciprocal of the mean: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>=</mo><mfrac><mn>1</mn><mtext>Mean</mtext></mfrac></mrow><annotation encoding="application/x-tex">\lambda = \frac{1}{\text{Mean}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">λ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1901em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8451em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">Mean</span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>⚛️ The PDF formula is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>=</mo><mi>λ</mi><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>X</mi></mrow></msup></mrow><annotation encoding="application/x-tex">f(X) = \lambda e^{-\lambda X}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord mathnormal">λ</span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight">λ</span><span class="mord mathnormal mtight" style="margin-right:0.07847em;">X</span></span></span></span></span></span></span></span></span></span></span></span>.<br/>➖ To find the probability that $X$ is less than a specific value $x$, use the formula: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>X</mi><mo><</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn><mo>−</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>x</mi></mrow></msup></mrow><annotation encoding="application/x-tex">P(X < x) = 1 - e^{-\lambda x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight">λ</span><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Key Points & Insights</strong><br/>➡️ For continuous probability, <span class="yellow-highlight font-semibold">area under the curve equals probability</span> for any given range of $X$.<br/>➡️ Since the area of a single point is zero, using <span class="yellow-highlight font-semibold">strict inequalities ($<$) or inclusive inequalities (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>≤</mo></mrow><annotation encoding="application/x-tex">\le</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mrel">≤</span></span></span></span>) yields the same probability result</span> for continuous variables.<br/>➡️ When dealing with a <span class="yellow-highlight font-semibold">uniform distribution</span> ranging from $A$ to $B$, ensure the height of the function $f(X)$ is set such that the resulting rectangular area equals <span class="yellow-highlight font-semibold">1</span>.<br/>➡️ In the <span class="yellow-highlight font-semibold">exponential distribution</span>, the probability of $X$ being <span class="yellow-highlight font-semibold">greater than $x$</span> is calculated directly using <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>x</mi></mrow></msup></mrow><annotation encoding="application/x-tex">e^{-\lambda x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8491em;"></span><span class="mord"><span class="mord mathnormal">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathnormal mtight">λ</span><span class="mord mathnormal mtight">x</span></span></span></span></span></span></span></span></span></span></span></span>.</p>
<p class="mb-4">📸 Video summarized with <a href='https://summarytube.com'>SummaryTube.com</a> on Nov 20, 2025, 07:14 UTC</p>