AI Summary of "Derivation of magnetic field on the axis of a current carrying circular coil."
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Magnetic Field Derivation for a Circular Coil</strong><br/>📌 The magnetic field (dB) produced by a small current element (dL) on a circular coil is calculated using the <span class="yellow-highlight font-semibold">Biot-Savart Law</span>: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>B</mi><mo>=</mo><mfrac><msub><mi>μ</mi><mn>0</mn></msub><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mfrac><mrow><mi>I</mi><mtext> </mtext><mi>d</mi><mi>L</mi><mi>sin</mi><mo></mo><mi>θ</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">dB = \frac{\mu_0}{4\pi} \frac{I\,dL \sin\theta}{r^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2251em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7475em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">L</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mop mtight"><span class="mtight">s</span><span class="mtight">i</span><span class="mtight">n</span></span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight" style="margin-right:0.02778em;">θ</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>📐 Due to the geometry where the slant height (AP) is perpendicular to the coil's circumference, <span class="yellow-highlight font-semibold"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>sin</mi><mo></mo><mi>θ</mi><mo>=</mo><mi>sin</mi><mo></mo><msup><mn>90</mn><mo>∘</mo></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sin\theta = \sin 90^\circ = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6741em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord">9</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6741em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∘</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span></span>, simplifying the field contribution to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>B</mi><mo>=</mo><mfrac><msub><mi>μ</mi><mn>0</mn></msub><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mfrac><mrow><mi>I</mi><mtext> </mtext><mi>d</mi><mi>L</mi></mrow><msup><mi>r</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">dB = \frac{\mu_0}{4\pi} \frac{I\,dL}{r^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2251em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7475em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8801em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span><span class="mspace mtight" style="margin-right:0.1952em;"></span><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">L</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>🔄 When resolving the vector contributions (dB) from opposite elements (like at points A and B), the components perpendicular to the axis (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>DB</mtext><mi>sin</mi><mo></mo><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\text{DB} \sin\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">DB</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ϕ</span></span></span></span>) add up, while the components parallel to the axis (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>DB</mtext><mi>cos</mi><mo></mo><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\text{DB} \cos\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">DB</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ϕ</span></span></span></span>) cancel each other out.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Total Magnetic Field on the Axis</strong><br/>🔗 The total magnetic field ($B$) is obtained by integrating the contributing component along the loop: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>=</mo><mo>∫</mo><mtext>DB</mtext><mi>sin</mi><mo></mo><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">B = \int \text{DB} \sin\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.1111em;vertical-align:-0.3061em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0006em;">∫</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord text"><span class="mord">DB</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ϕ</span></span></span></span>.<br/>🧮 Substituting <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>sin</mi><mo></mo><mi>ϕ</mi><mo>=</mo><mfrac><mi>a</mi><mi>R</mi></mfrac></mrow><annotation encoding="application/x-tex">\sin\phi = \frac{a}{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ϕ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0404em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6954em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> (where $a$ is the radius and $R$ is the distance AP) and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∫</mo><mi>d</mi><mi>L</mi><mo>=</mo><mn>2</mn><mi>π</mi><mi>a</mi></mrow><annotation encoding="application/x-tex">\int dL = 2\pi a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1111em;vertical-align:-0.3061em;"></span><span class="mop op-symbol small-op" style="margin-right:0.19445em;position:relative;top:-0.0006em;">∫</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mord mathnormal">πa</span></span></span></span> (the perimeter), the formula simplifies to <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>=</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub><mi>I</mi><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><msup><mi>R</mi><mn>3</mn></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">B = \frac{\mu_0 I a^2}{2 R^3}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.415em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.07em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>📏 Expressing $R$ in terms of the axial distance $x$ and radius $a$ (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mo>=</mo><msqrt><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></msqrt></mrow><annotation encoding="application/x-tex">R = \sqrt{x^2 + a^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.04em;vertical-align:-0.1266em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9134em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-2.8734em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702<br/>c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14<br/>c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54<br/>c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10<br/>s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429<br/>c69,-144,104.5,-217.7,106.5,-221<br/>l0 -0<br/>c5.3,-9.3,12,-14,20,-14<br/>H400000v40H845.2724<br/>s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7<br/>c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z<br/>M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1266em;"><span></span></span></span></span></span></span></span></span>), the final expression for the magnetic field on the axis at distance $x$ is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo>=</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub><mi>I</mi><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mo stretchy="false">(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mo stretchy="false">)</mo><mrow><mn>3</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">B = \frac{\mu_0 I a^2}{2 (x^2 + a^2)^{3/2}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.6305em;vertical-align:-0.5604em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.07em;"><span style="top:-2.6146em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose mtight"><span class="mclose mtight">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.822em;"><span style="top:-2.822em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5357em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">3/2</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5604em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Special Cases and Center Field</strong><br/>🔄 For a coil with $n$ turns, the magnetic field is multiplied by $n$: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mi>n</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub><mi>n</mi><mi>I</mi><msup><mi>a</mi><mn>2</mn></msup></mrow><mrow><mn>2</mn><mo stretchy="false">(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mo stretchy="false">)</mo><mrow><mn>3</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">B_n = \frac{\mu_0 n I a^2}{2 (x^2 + a^2)^{3/2}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.6305em;vertical-align:-0.5604em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.07em;"><span style="top:-2.6146em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mopen mtight">(</span><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mbin mtight">+</span><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7463em;"><span style="top:-2.786em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose mtight"><span class="mclose mtight">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.822em;"><span style="top:-2.822em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5357em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">3/2</span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913em;"><span style="top:-2.931em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5604em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>⚫ The magnetic field at the <span class="yellow-highlight font-semibold">center of the coil</span> is found by setting the axial distance $x=0$, resulting in the formula <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mtext>center</mtext></msub><mo>=</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub><mi>I</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">B_{\text{center}} = \frac{\mu_0 I}{2a}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2806em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">center</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2694em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9244em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">a</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Key Points & Insights</strong><br/>➡️ The derivation hinges on the geometric relationship ensuring <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>sin</mi><mo></mo><mi>θ</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sin\theta = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">1</span></span></span></span> for the magnetic field contribution from each element.<br/>➡️ <span class="yellow-highlight font-semibold">Cancellation of perpendicular components</span> (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>DB</mtext><mi>cos</mi><mo></mo><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\text{DB} \cos\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord text"><span class="mord">DB</span></span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal">ϕ</span></span></span></span>) is crucial for the net field lying purely along the axis of the coil.<br/>➡️ The magnetic field strength at the center of the coil (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>B</mi><mtext>center</mtext></msub><mo>=</mo><mfrac><mrow><msub><mi>μ</mi><mn>0</mn></msub><mi>I</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">B_{\text{center}} = \frac{\mu_0 I}{2a}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2806em;"><span style="top:-2.55em;margin-left:-0.0502em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">center</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.2694em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9244em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">a</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3173em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>) represents the maximum field strength generated by the loop.</p>
<p class="mb-4">📸 Video summarized with <a href='https://summarytube.com'>SummaryTube.com</a> on Nov 20, 2025, 04:55 UTC</p>