AI Summary of "Hukum Biot Savart dan Hukum Ampere (part 1)"
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Magnetic Fields and Biot-Savart Law</strong><br/>π The session covers defining <span class="yellow-highlight font-semibold">magnetic fields</span>, understanding the <span class="yellow-highlight font-semibold">Biot-Savart Law</span> and <span class="yellow-highlight font-semibold">AmpΓ¨re's Law</span>, and applying them to calculate magnetic fields from electric currents.<br/>π§² The interaction between two parallel wires carrying currents (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">I_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">I_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0785em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>) demonstrates the existence of a magnetic field: parallel currents in the same direction attract, while opposite currents repel.<br/>π‘ The magnetic field intensity (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>) generated by a current-carrying wire creates a force (Lorentz force, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi><mo>=</mo><mi>I</mi><mi mathvariant="bold">L</mi><mo>Γ</mo><mi mathvariant="bold">B</mi></mrow><annotation encoding="application/x-tex">\mathbf{F} = I\mathbf{L} \times \mathbf{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">F</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7694em;vertical-align:-0.0833em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mord mathbf">L</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">Γ</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">B</span></span></span></span>) on a second wire; this field direction is determined using the <span class="yellow-highlight font-semibold">right-hand rule</span> (thumb along current, curled fingers indicate <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>).<br/>π The magnetic flux density (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">B</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">B</span></span></span></span>) is related to the magnetic field intensity (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>) by the equation <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">B</mi><mo>=</mo><msub><mi>ΞΌ</mi><mn>0</mn></msub><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{B} = \mu_0 \mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">B</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8805em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">ΞΌ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathbf">H</span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Biot-Savart Law Formulation</strong><br/>π The Biot-Savart Law provides a method to calculate the magnetic field intensity (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>) generated by a current element (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>I</mi><mi>d</mi><mi mathvariant="bold">l</mi></mrow><annotation encoding="application/x-tex">I d\mathbf{l}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mord mathnormal">d</span><span class="mord mathbf">l</span></span></span></span>):<br/><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>d</mi><mi mathvariant="bold">H</mi><mo>=</mo><mfrac><mrow><mi>I</mi><mi>d</mi><mi mathvariant="bold">l</mi><mo>Γ</mo><msub><mi mathvariant="bold">a</mi><mi>R</mi></msub></mrow><mrow><mn>4</mn><mi>Ο</mi><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">d\mathbf{H} = \frac{I d\mathbf{l} \times \mathbf{a}_R}{4\pi R^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathbf">H</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">Ο</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span><span class="mord mathnormal">d</span><span class="mord mathbf">l</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">Γ</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span><br/>where $R$ is the distance from the current element to the observation point, and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold">a</mi><mi>R</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{a}_R</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5944em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> is the unit vector pointing from <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="bold">l</mi></mrow><annotation encoding="application/x-tex">d\mathbf{l}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathbf">l</span></span></span></span> to the point.<br/>π For a closed loop, the total magnetic field is found by taking the closed line integral of the Biot-Savart expression.<br/>β‘ For current distributions over surfaces (surface current density <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">K</mi></mrow><annotation encoding="application/x-tex">\mathbf{K}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">K</span></span></span></span>) or volumes (volume current density <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">J</mi></mrow><annotation encoding="application/x-tex">\mathbf{J}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">J</span></span></span></span>), the law is adapted:<br/><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>d</mi><mi mathvariant="bold">H</mi><mo>=</mo><mfrac><mrow><mi mathvariant="bold">K</mi><mo>Γ</mo><msub><mi mathvariant="bold">a</mi><mi>R</mi></msub><mi>d</mi><mi>S</mi></mrow><mrow><mn>4</mn><mi>Ο</mi><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac><mspace width="1em"/><mtext>or</mtext><mspace width="1em"/><mi>d</mi><mi mathvariant="bold">H</mi><mo>=</mo><mfrac><mrow><mi mathvariant="bold">J</mi><mo>Γ</mo><msub><mi mathvariant="bold">a</mi><mi>R</mi></msub><mi>d</mi><mi>V</mi></mrow><mrow><mn>4</mn><mi>Ο</mi><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding="application/x-tex">d\mathbf{H} = \frac{\mathbf{K} \times \mathbf{a}_R dS}{4\pi R^2} \quad \text{or} \quad d\mathbf{H} = \frac{\mathbf{J} \times \mathbf{a}_R dV}{4\pi R^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathbf">H</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">Ο</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">K</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">Γ</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord">or</span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathnormal">d</span><span class="mord mathbf">H</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.0574em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3714em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">Ο</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathbf">J</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">Γ</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3283em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.00773em;">R</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.22222em;">V</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Application: Magnetic Field of an Infinite Straight Wire</strong><br/>π Calculating the magnetic field intensity (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>) for an infinitely long straight wire along the $z$-axis, observed at a distance <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Ο</mi></mrow><annotation encoding="application/x-tex">\rho</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">Ο</span></span></span></span> in the $xy$-plane (using cylindrical coordinates), involves integrating the differential form of the Biot-Savart Law.<br/>π The setup requires defining the position vector <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi><mo>=</mo><mi>Ο</mi><msub><mi mathvariant="bold">a</mi><mi>Ο</mi></msub><mo>β</mo><msup><mi>z</mi><mo mathvariant="normal" lspace="0em" rspace="0em">β²</mo></msup><msub><mi mathvariant="bold">a</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{R} = \rho \mathbf{a}_{\rho} - z' \mathbf{a}_{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8694em;vertical-align:-0.2861em;"></span><span class="mord mathnormal">Ο</span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">Ο</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">β</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.9019em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">β²</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>, where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mo>=</mo><msqrt><mrow><msup><mi>Ο</mi><mn>2</mn></msup><mo>+</mo><msup><mi>z</mi><mrow><mo mathvariant="normal">β²</mo><mn>2</mn></mrow></msup></mrow></msqrt></mrow><annotation encoding="application/x-tex">R = \sqrt{\rho^2 + z'^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.24em;vertical-align:-0.2822em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9578em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal">Ο</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7401em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">β²2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-2.9178em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.28em" viewBox="0 0 400000 1296" preserveAspectRatio="xMinYMin slice"><path d="M263,681c0.7,0,18,39.7,52,119<br/>c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120<br/>c340,-704.7,510.7,-1060.3,512,-1067<br/>l0 -0<br/>c4.7,-7.3,11,-11,19,-11<br/>H40000v40H1012.3<br/>s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232<br/>c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1<br/>s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26<br/>c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z<br/>M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.2822em;"><span></span></span></span></span></span></span></span></span>, and the current element <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="bold">l</mi><mo>=</mo><mi>d</mi><msup><mi>z</mi><mo mathvariant="normal" lspace="0em" rspace="0em">β²</mo></msup><msub><mi mathvariant="bold">a</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">d\mathbf{l} = dz' \mathbf{a}_{z}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">d</span><span class="mord mathbf">l</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.9019em;vertical-align:-0.15em;"></span><span class="mord mathnormal">d</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">β²</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.1514em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>.<br/>β
The integration, performed by substitution using <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>tan</mi><mo>β‘</mo><mi>ΞΈ</mi><mo>=</mo><msup><mi>z</mi><mo mathvariant="normal" lspace="0em" rspace="0em">β²</mo></msup><mi mathvariant="normal">/</mi><mi>Ο</mi></mrow><annotation encoding="application/x-tex">\tan\theta = z'/\rho</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mop">tan</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">ΞΈ</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.0019em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7519em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">β²</span></span></span></span></span></span></span></span></span><span class="mord">/</span><span class="mord mathnormal">Ο</span></span></span></span>, yields the result for the magnetic field intensity <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>:<br/><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="bold">H</mi><mo>=</mo><mfrac><mi>I</mi><mrow><mn>2</mn><mi>Ο</mi><mi>Ο</mi></mrow></mfrac><msub><mi mathvariant="bold">a</mi><mi>Ο</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{H} = \frac{I}{2\pi \rho} \mathbf{a}_{\phi}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:2.2408em;vertical-align:-0.8804em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">Ο</span><span class="mord mathnormal">Ο</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07847em;">I</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.8804em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">Ο</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span></span><br/>(Note: The lecture derived the result as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi><mo>=</mo><mfrac><mi>I</mi><mrow><mn>2</mn><mi>Ο</mi><mi>Ο</mi></mrow></mfrac><msub><mi mathvariant="bold">a</mi><mi>Ο</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{H} = \frac{I}{2\pi \rho} \mathbf{a}_{\psi}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3534em;vertical-align:-0.4811em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8723em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">Ο</span><span class="mord mathnormal mtight">Ο</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.4811em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">Ο</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span> where <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold">a</mi><mi>Ο</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{a}_{\psi}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7305em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">Ο</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span> represents the azimuthal unit vector, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="bold">a</mi><mi>Ο</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{a}_{\phi}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7305em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">Ο</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span>).</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Key Points & Insights</strong><br/>β‘οΈ Magnetic forces between wires arise because moving charges (currents) generate a <span class="yellow-highlight font-semibold">magnetic field</span> (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>) in the surrounding space.<br/>β‘οΈ Mastering the <span class="yellow-highlight font-semibold">right-hand rule</span> is essential for correctly determining the direction of the magnetic field (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span>) around a current path and the resulting Lorentz force (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">F</span></span></span></span>).<br/>β‘οΈ For finite wires, the magnetic field intensity <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span></span></span></span> at a point can be found by integrating the Biot-Savart Law between the limits <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>Z</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">Z_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>Z</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">Z_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0715em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>, resulting in <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">H</mi><mo>=</mo><mfrac><mi>I</mi><mrow><mn>4</mn><mi>Ο</mi><mi>Ο</mi></mrow></mfrac><mo stretchy="false">(</mo><mi>sin</mi><mo>β‘</mo><msub><mi>Ξ±</mi><mn>2</mn></msub><mo>β</mo><mi>sin</mi><mo>β‘</mo><msub><mi>Ξ±</mi><mn>1</mn></msub><mo stretchy="false">)</mo><msub><mi mathvariant="bold">a</mi><mi>Ο</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{H} = \frac{I}{4\pi \rho} (\sin\alpha_2 - \sin\alpha_1) \mathbf{a}_{\phi}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6861em;"></span><span class="mord mathbf">H</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.3534em;vertical-align:-0.4811em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8723em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">Ο</span><span class="mord mathnormal mtight">Ο</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.07847em;">I</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.4811em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">Ξ±</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">β</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1.0361em;vertical-align:-0.2861em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.0037em;">Ξ±</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3011em;"><span style="top:-2.55em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathbf">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">Ο</span></span></span></span></span><span class="vlist-s">β</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span>.</p>
<p class="mb-4">πΈ Video summarized with <a href='https://summarytube.com'>SummaryTube.com</a> on Nov 26, 2025, 03:32 UTC</p>