AI Summary of "Review: Sampling Distribution of the Sample Proportion, Binomial Distribution, Probability (7.5)"
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Binomial Distribution Example (N=3 Trials)</strong><br/>📌 Initial setup involved 200 green and 300 blue marbles, making the probability of success (drawing green, $P$) equal to $200/500 = 0.4$, and failure ($1-P$) equal to $0.6$.<br/>🎲 The probability of drawing <span class="yellow-highlight font-semibold">at least two green marbles</span> in three draws with replacement is calculated as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mtext>exactly 2 Green</mtext><mo stretchy="false">)</mo><mo>+</mo><mi>P</mi><mo stretchy="false">(</mo><mtext>exactly 3 Green</mtext><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(\text{exactly 2 Green}) + P(\text{exactly 3 Green})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord text"><span class="mord">exactly 2 Green</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord text"><span class="mord">exactly 3 Green</span></span><span class="mclose">)</span></span></span></span>.<br/>📊 The probability of exactly two green marbles was calculated by summing the probabilities of the three possible sequences (GGB, GBG, BGG), resulting in $0.288$.<br/>✅ The final probability for at least two green marbles was <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0.288</mn><mo>+</mo><mn>0.064</mn><mo>=</mo><mn mathvariant="bold">0.352</mn></mrow><annotation encoding="application/x-tex">0.288 + 0.064 = \mathbf{0.352}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">0.288</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.064</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord mathbf">0.352</span></span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Binomial Distribution Application (N=5 Trials)</strong><br/>⚙️ When drawing five marbles, calculating <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mtext>at least 2 Green</mtext><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(\text{at least 2 Green})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord text"><span class="mord">at least 2 Green</span></span><span class="mclose">)</span></span></span></span> requires summing probabilities for $k=2, 3, 4,$ and $5$ successes using the binomial formula.<br/>🎯 Using the binomial formula for $k=2$ successes out of $n=5$ trials with $P=0.4$ yielded a probability of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn mathvariant="bold">0.3456</mn></mrow><annotation encoding="application/x-tex">\mathbf{0.3456}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord mathbf">0.3456</span></span></span></span></span>.<br/>📈 The total approximate probability for drawing at least two green marbles in five trials was calculated to be <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn mathvariant="bold">0.6634</mn></mrow><annotation encoding="application/x-tex">\mathbf{0.6634}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord mathbf">0.6634</span></span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Sampling Distribution and Central Limit Theorem (N=100 Trials)</strong><br/>📏 For $n=100$ trials and $P=0.4$, the Central Limit Theorem (CLT) conditions are met because <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>⋅</mo><mi>P</mi><mo>=</mo><mn>100</mn><mo>⋅</mo><mn>0.4</mn><mo>=</mo><mn>40</mn><mo>≥</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n \cdot P = 100 \cdot 0.4 = 40 \ge 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">100</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.4</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">40</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>P</mi><mo stretchy="false">)</mo><mo>=</mo><mn>100</mn><mo>⋅</mo><mn>0.6</mn><mo>=</mo><mn>60</mn><mo>≥</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n \cdot (1-P) = 100 \cdot 0.6 = 60 \ge 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">100</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.6</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7804em;vertical-align:-0.136em;"></span><span class="mord">60</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span>.<br/>📉 To find the approximate probability of drawing at least 35 green marbles (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover><mo>≥</mo><mn>0.35</mn></mrow><annotation encoding="application/x-tex">\hat{p} \ge 0.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.35</span></span></span></span>), the $z$-score formula for proportions is applied: <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>=</mo><mfrac><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover><mo>−</mo><mi>P</mi></mrow><msqrt><mrow><mi>P</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>P</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi>n</mi></mrow></msqrt></mfrac></mrow><annotation encoding="application/x-tex">z = \frac{\hat{p} - P}{\sqrt{P(1-P)/n}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.7618em;vertical-align:-0.8296em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.4642em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.0369em;"><span class="svg-align" style="top:-3.4286em;"><span class="pstrut" style="height:3.4286em;"></span><span class="mord mtight" style="padding-left:1.19em;"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mclose mtight">)</span><span class="mord mtight">/</span><span class="mord mathnormal mtight">n</span></span></span><span style="top:-3.0089em;"><span class="pstrut" style="height:3.4286em;"></span><span class="hide-tail mtight" style="min-width:0.853em;height:1.5429em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.5429em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702<br/>c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14<br/>c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54<br/>c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10<br/>s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429<br/>c69,-144,104.5,-217.7,106.5,-221<br/>l0 -0<br/>c5.3,-9.3,12,-14,20,-14<br/>H400000v40H845.2724<br/>s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7<br/>c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z<br/>M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4197em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord accent mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight">p</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord mtight">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mbin mtight">−</span><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8296em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>🧮 Plugging in values (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover><mo>=</mo><mn>0.35</mn></mrow><annotation encoding="application/x-tex">\hat{p}=0.35</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.35</span></span></span></span>, $P=0.4$, $n=100$), the resulting $z$-score is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mn mathvariant="bold">1.02</mn></mrow><annotation encoding="application/x-tex">\mathbf{-1.02}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathbf">1.02</span></span></span></span></span>.<br/>✅ Since the $z$-score of $-1.02$ corresponds to an area of $0.1539$ to the left, the probability of drawing <span class="yellow-highlight font-semibold">at least 35</span> (the area to the right) is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>−</mo><mn>0.1539</mn><mo>=</mo><mn mathvariant="bold">0.8461</mn></mrow><annotation encoding="application/x-tex">1 - 0.1539 = \mathbf{0.8461}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.1539</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord"><span class="mord mathbf">0.8461</span></span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Key Points & Insights</strong><br/>➡️ For small numbers of trials ($n=3$ or $n=5$), <span class="yellow-highlight font-semibold">exact probabilities</span> are calculated using the binomial distribution formula or sample space enumeration.<br/>➡️ For large sample sizes ($n=100$), the <span class="yellow-highlight font-semibold">Central Limit Theorem</span> is used to find an <span class="yellow-highlight font-semibold">approximate probability</span> via the sampling distribution of the sample proportion.<br/>➡️ Always verify the CLT conditions (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>⋅</mo><mi>P</mi><mo>≥</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n \cdot P \ge 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8193em;vertical-align:-0.136em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>P</mi><mo stretchy="false">)</mo><mo>≥</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n \cdot (1-P) \ge 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span>) before applying the normal approximation for proportions.</p>
<p class="mb-4">📸 Video summarized with <a href='https://summarytube.com'>SummaryTube.com</a> on Dec 03, 2025, 17:41 UTC</p>