AI Summary of "Sampling Distribution of the Sample Proportion (7.4)"
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Understanding Sampling Distributions and Proportions</strong><br/>š A <span class="yellow-highlight font-semibold">sampling distribution</span> is formed by repeatedly taking samples, calculating a statistic (like <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{p}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span> or <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>x</mi><mo>Ė</mo></mover></mrow><annotation encoding="application/x-tex">\bar{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5678em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.5678em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">x</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2222em;"><span class="mord">Ė</span></span></span></span></span></span></span></span></span></span>) for each, and graphing the results.<br/>š A <span class="yellow-highlight font-semibold">proportion</span> represents the fraction of favorable outcomes relative to the whole, calculated as (Number of Favorable Outcomes) / (Total Number of Outcomes).<br/>š For a sample proportion, the symbol is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{p}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span>; for the population proportion, the symbol is $p$. For an example, a sample size of 10 with 2 green-eyed people yields a proportion <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover><mo>=</mo><mn>2</mn><mi mathvariant="normal">/</mi><mn>10</mn><mo>=</mo><mn>0.2</mn></mrow><annotation encoding="application/x-tex">\hat{p} = 2/10 = 0.2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2/10</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0.2</span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Properties of the Sampling Distribution of the Sample Proportion (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{p}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span>)</strong><br/>š¬ If the sampling distribution of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{p}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span> is normal (applies Central Limit Theorem), the mean (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>μ</mi><mover accent="true"><mi>p</mi><mo>^</mo></mover></msub></mrow><annotation encoding="application/x-tex">\mu_{\hat{p}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord accent mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight">p</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord mtight">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span>) equals the population proportion ($p$).<br/>š The standard deviation (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>Ļ</mi><mover accent="true"><mi>p</mi><mo>^</mo></mover></msub></mrow><annotation encoding="application/x-tex">\sigma_{\hat{p}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">Ļ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord accent mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight">p</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord mtight">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span>) is calculated as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mn>1</mn><mo>ā</mo><mi>p</mi><mo stretchy="false">)</mo></mrow><mi>n</mi></mfrac></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{\frac{p(1-p)}{n}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.84em;vertical-align:-0.5225em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3175em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">p</span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">ā</span><span class="mord mathnormal mtight">p</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.2775em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.88em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.88em" viewBox="0 0 400000 1944" preserveAspectRatio="xMinYMin slice"><path d="M983 90<br/>l0 -0<br/>c4,-6.7,10,-10,18,-10 H400000v40<br/>H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7<br/>s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744<br/>c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30<br/>c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722<br/>c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5<br/>c53.7,-170.3,84.5,-266.8,92.5,-289.5z<br/>M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.5225em;"><span></span></span></span></span></span></span></span></span>, where $Q = 1-p$ (the proportion of unsuccessful outcomes) and $n$ is the sample size.<br/>š The <span class="yellow-highlight font-semibold">standardization formula</span> (Z-score for proportions) is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Z</mi><mo>=</mo><mfrac><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover><mo>ā</mo><mi>p</mi></mrow><msub><mi>Ļ</mi><mover accent="true"><mi>p</mi><mo>^</mo></mover></msub></mfrac></mrow><annotation encoding="application/x-tex">Z = \frac{\hat{p} - p}{\sigma_{\hat{p}}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6833em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">Z</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:1.4803em;vertical-align:-0.5481em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9322em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">Ļ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3488em;margin-left:-0.0359em;margin-right:0.0714em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord accent mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.6944em;"><span class="pstrut" style="height:2.6944em;"></span><span class="mord mathnormal mtight">p</span></span><span style="top:-2.6944em;"><span class="pstrut" style="height:2.6944em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord mtight">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.2901em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.4461em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord accent mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight">p</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord mtight">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span><span class="mbin mtight">ā</span><span class="mord mathnormal mtight">p</span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.5481em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>, allowing the use of the Z-score table for calculating areas.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Central Limit Theorem (CLT) Conditions for Proportions</strong><br/>ā
The Central Limit Theorem applies to the sampling distribution of <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{p}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8889em;vertical-align:-0.1944em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span> only if two specific conditions are met:<br/>1. <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>ā
</mo><mi>p</mi><mo>ā„</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n \cdot p \geq 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">ā
</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8304em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">ā„</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span><br/>2. <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>ā
</mo><mo stretchy="false">(</mo><mn>1</mn><mo>ā</mo><mi>p</mi><mo stretchy="false">)</mo><mo>ā„</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n \cdot (1 - p) \geq 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4445em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">ā
</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">ā</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">p</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">ā„</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span><br/>š§ This differs from the sample mean distribution where the CLT generally applies when <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>ā„</mo><mn>30</mn></mrow><annotation encoding="application/x-tex">n \geq 30</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7719em;vertical-align:-0.136em;"></span><span class="mord mathnormal">n</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">ā„</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">30</span></span></span></span>.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Key Points & Insights</strong><br/>ā”ļø The <span class="yellow-highlight font-semibold">mean of all sample proportions</span> (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>μ</mi><mover accent="true"><mi>p</mi><mo>^</mo></mover></msub></mrow><annotation encoding="application/x-tex">\mu_{\hat{p}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord accent mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight">p</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord mtight">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span>) converges to the <span class="yellow-highlight font-semibold">true population proportion</span> ($p$).<br/>ā”ļø To use the Z-table for proportions, ensure both <span class="yellow-highlight font-semibold"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mi>p</mi><mo>ā„</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">np \geq 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8304em;vertical-align:-0.1944em;"></span><span class="mord mathnormal">n</span><span class="mord mathnormal">p</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">ā„</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mn>1</mn><mo>ā</mo><mi>p</mi><mo stretchy="false">)</mo><mo>ā„</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n(1-p) \geq 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">n</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">ā</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">p</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">ā„</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span></span></span></span></span> are satisfied.<br/>ā”ļø The standard error (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>Ļ</mi><mover accent="true"><mi>p</mi><mo>^</mo></mover></msub></mrow><annotation encoding="application/x-tex">\sigma_{\hat{p}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7167em;vertical-align:-0.2861em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">Ļ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361em;"><span style="top:-2.55em;margin-left:-0.0359em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord accent mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.6944em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mathnormal mtight">p</span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="left:-0.1667em;"><span class="mord mtight">^</span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1944em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.2861em;"><span></span></span></span></span></span></span></span></span></span>) for proportions is <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msqrt><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mn>1</mn><mo>ā</mo><mi>p</mi><mo stretchy="false">)</mo></mrow><mi>n</mi></mfrac></msqrt></mrow><annotation encoding="application/x-tex">\sqrt{\frac{p(1-p)}{n}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.84em;vertical-align:-0.5225em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3175em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">p</span><span class="mopen mtight">(</span><span class="mord mtight">1</span><span class="mbin mtight">ā</span><span class="mord mathnormal mtight">p</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.2775em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.88em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.88em" viewBox="0 0 400000 1944" preserveAspectRatio="xMinYMin slice"><path d="M983 90<br/>l0 -0<br/>c4,-6.7,10,-10,18,-10 H400000v40<br/>H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7<br/>s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744<br/>c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30<br/>c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722<br/>c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5<br/>c53.7,-170.3,84.5,-266.8,92.5,-289.5z<br/>M1001 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.5225em;"><span></span></span></span></span></span></span></span></span>, which is crucial for calculating Z-scores.</p>
<p class="mb-4">šø Video summarized with <a href='https://summarytube.com'>SummaryTube.com</a> on Dec 03, 2025, 14:49 UTC</p>