AI Summary of "Routh-Hurwitz Criteria (Special Case 2)"
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Routh Array Special Case 2: Row of Zeros</strong><br/>š Special Case 2 in the Routh-Hurwitz (RH) criteria occurs when <span class="yellow-highlight font-semibold">all elements of a row in the Routh array are zero</span> (a row of zeros).<br/>ā The presence of a row of zeros means the subsequent row's terms cannot be determined (they become infinite), causing the standard Routh test to <span class="yellow-highlight font-semibold">fail</span>.<br/>š To resolve this, an <span class="yellow-highlight font-semibold">auxiliary polynomial, $A(s)$</span>, is formed using the coefficients of the row <span class="yellow-highlight font-semibold">immediately above</span> the row of zeros.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Solving the Row of Zeros Using the Auxiliary Polynomial</strong><br/>1. š ļø The auxiliary polynomial $A(s)$ is constructed using the coefficients from the row above the zeros, ensuring powers of $s$ are always <span class="yellow-highlight font-semibold">even</span> (e.g., <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>s</mi><mn>4</mn></msup><mo separator="true">,</mo><msup><mi>s</mi><mn>2</mn></msup><mo separator="true">,</mo><msup><mi>s</mi><mn>0</mn></msup></mrow><annotation encoding="application/x-tex">s^4, s^2, s^0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0085em;vertical-align:-0.1944em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.1667em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span></span></span></span></span></span></span></span>).<br/>2. š The next step involves taking the <span class="yellow-highlight font-semibold">derivative</span> of the auxiliary polynomial with respect to $s$, denoted as <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>A</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><mrow><mi>d</mi><mi>s</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{d A(s)}{d s}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.355em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">s</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">A</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">s</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>.<br/>3. š The row of zeros in the Routh array is then <span class="yellow-highlight font-semibold">replaced</span> by the coefficients derived from <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>A</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><mrow><mi>d</mi><mi>s</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{d A(s)}{d s}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.355em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">s</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">d</span><span class="mord mathnormal mtight">A</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">s</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span>, allowing the array computation to continue.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Auxiliary Equation and Stability Implications</strong><br/>š” Setting the auxiliary polynomial to zero, $A(s) = 0$, yields the <span class="yellow-highlight font-semibold">auxiliary equation</span>, whose roots determine stability when a row of zeros is present.<br/>š The roots of the auxiliary equation are always <span class="yellow-highlight font-semibold">symmetric with respect to the origin</span> on the $s$-plane.<br/>š If a row of zeros exists, the system will <span class="yellow-highlight font-semibold">not be stable</span>; it can only be <span class="yellow-highlight font-semibold">marginally stable or unstable</span>, depending on the auxiliary equation's roots.</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Example Application and Stability Determination</strong><br/>š For the characteristic equation <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>s</mi><mn>6</mn></msup><mo>+</mo><mn>2</mn><msup><mi>s</mi><mn>5</mn></msup><mo>+</mo><mn>8</mn><msup><mi>s</mi><mn>4</mn></msup><mo>+</mo><mn>12</mn><msup><mi>s</mi><mn>3</mn></msup><mo>+</mo><mn>20</mn><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn><mi>s</mi><mo>+</mo><mn>16</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">6</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">8</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">12</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">20</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">16</span><span class="mord mathnormal">s</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">16</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span>, a row of zeros appeared at the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>s</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">s^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141em;"></span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span> row.<br/>ā The auxiliary polynomial derived was <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><msup><mi>s</mi><mn>4</mn></msup><mo>+</mo><mn>12</mn><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow><annotation encoding="application/x-tex">A(s) = 2s^4 + 12s^2 + 16</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal">A</span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.8974em;vertical-align:-0.0833em;"></span><span class="mord">12</span><span class="mord"><span class="mord mathnormal">s</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">16</span></span></span></span>.<br/>š The roots of $A(s)=0$ were found to be <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>±</mo><mi>j</mi><msqrt><mn>2</mn></msqrt></mrow><annotation encoding="application/x-tex">\pm j\sqrt{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1017em;vertical-align:-0.1944em;"></span><span class="mord">±</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9072em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span></span></span><span style="top:-2.8672em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg xmlns="http://www.w3.org/2000/svg" width="400em" height="1.08em" viewBox="0 0 400000 1080" preserveAspectRatio="xMinYMin slice"><path d="M95,702<br/>c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14<br/>c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54<br/>c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10<br/>s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429<br/>c69,-144,104.5,-217.7,106.5,-221<br/>l0 -0<br/>c5.3,-9.3,12,-14,20,-14<br/>H400000v40H845.2724<br/>s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7<br/>c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z<br/>M834 80h400000v40h-400000z"/></svg></span></span></span><span class="vlist-s">ā</span></span><span class="vlist-r"><span class="vlist" style="height:0.1328em;"><span></span></span></span></span></span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>±</mo><mi>j</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\pm j2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.854em;vertical-align:-0.1944em;"></span><span class="mord">±</span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span><span class="mord">2</span></span></span></span>, meaning <span class="yellow-highlight font-semibold">four poles lie on the imaginary axis</span>.<br/>ā
Since there were <span class="yellow-highlight font-semibold">zero sign changes</span> in the first column (below the modified array) and the auxiliary roots were purely imaginary, the system is <span class="yellow-highlight font-semibold">marginally stable</span> (two poles in LHP, four on the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi><mi>Ļ</mi></mrow><annotation encoding="application/x-tex">j\omega</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.854em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">jĻ</span></span></span></span> axis).</p>
<p class="mb-4"><strong class="section-heading text-xl font-bold mb-4 inline-block">Key Points & Insights</strong><br/>ā”ļø Whenever a row of zeros occurs, stability hinges on the <span class="yellow-highlight font-semibold">roots of the auxiliary equation</span> in addition to the sign changes in the first column.<br/>ā”ļø Roots of the auxiliary equation always appear <span class="yellow-highlight font-semibold">symmetric to the origin</span>; possibilities include pairs of poles in LHP/RHP (unstable) or pairs of complex conjugates on the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi><mi>Ļ</mi></mrow><annotation encoding="application/x-tex">j\omega</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.854em;vertical-align:-0.1944em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">jĻ</span></span></span></span> axis (marginally stable).<br/>ā”ļø If the number of sign changes in the first column is zero, the number of Right Half Plane (RHP) poles equals zero.<br/>ā”ļø A system exhibiting a row of zeros in the Routh array <span class="yellow-highlight font-semibold">cannot be asymptotically stable</span>.</p>
<p class="mb-4">šø Video summarized with <a href='https://summarytube.com'>SummaryTube.com</a> on Nov 12, 2025, 13:50 UTC</p>